Эффективные технологии

Регистрация | Забыли свой пароль?
27.08.2015

Профессор Олег Фиговский,

директор по науке и развитию INRC Polymate (Israel) и Nanotech Industries, Inc. (CA, USA)


За рубежом постоянно появляются новые эффективные технологии, о которых я бы хотел сообщить моим дорогим читателям.

Так, ученые из Калифорнийского университета в Сан-Диего разработали новую технологию передачи сигналов, использование которой позволит минимум удвоить объемы информации, передаваемой через оптоволоконные коммуникационные каналы. Внедрение этой новой технологии позволит «полностью изменить экономику, определяющую стоимость передачи потоков данных в современных сетях». Исследователи из Калифорнийского университета обнаружили достаточно простой способ, позволяющий избавиться от нелинейных искажений. Это, в свою очередь, позволяет увеличить пропускную способность оптических коммуникационных каналов в два-четыре раза или увеличить на такое же значение расстояние, которое смогут преодолеть оптические сигналы, прежде, чем потребуется их регенерация.

Вся проблема заключается в том, что лазеры, используемые в оптических коммуникациях, хоть и имеют достаточно высокую стабильность, но все же излучают фотоны света, длина волны которых отличается на сотые доли процента. Такие отличия в длине волны происходят по совершенно случайным законам и белый шум, который они добавляют к потоку передаваемых данных, вызывает нелинейные искажения, которые очень тяжело или иногда просто невозможно отфильтровать.

Предложенный учеными метод заключается в том, чтобы сделать неконтролируемые изменения длин волн фотонов лазерного света упорядоченными и предсказуемыми. В телекоммуникационных технологиях, как правило, используются несколько лазеров, генерирующих свет с определенными длинами волн, который одновременно распространяется по оптическому волокну. То, что сделали ученые из Калифорнии, прямо противоположно используемым технологиям. Они при помощи некоторых методов преобразовали импульс света лазера в импульс, состоящий из фотонов с несколькими фиксированными различными длинами волн. Эксперименты, в которых данные передавались при помощи таких полиимпульсов, показали, что анализ искажений, которым подверглись фотоны с различными длинами волн, прошедшие через оптоволокно, длиной в 1000 метров, позволит точно определить количественные показатели нелинейных искажений. И это, в свою очередь, позволило при помощи самых простейших методов полностью избавиться от искажений, получив на выходе абсолютно чистый сигнал.

Следует заметить, что пока эта технология требует некоторого количества достаточно громоздкого оптического оборудования. Но, с учетом нынешних темпов развития кремниевой фотоники и других смежных с этим областей, можно ожидать, что не в таком уж и далеком будущем разработанная калифорнийскими учеными технология передачи может быть миниатюризирована до того уровня, когда ее можно будет использовать на практике. А это, в свою очередь, позволит избавиться от необходимости установки дорогостоящих ретрансляторов сигнала или, что еще более важно, увеличить скорости передачи информации по оптическому волокну минимум в два раза.

У графена, углеродного материала толщиной в один атом, появляются конкуренты – такие слои также могут быть образованы из черного фосфора. Химики Технического университета Мюнхена (TUM) уже разработали полупроводниковый материал, в котором отдельные атомы фосфора заменили мышьяком. В рамках совместной международной работы их американские коллеги создали первые полевые транзисторы из нового материала. Сотрудничество между Техническим университетом Мюнхена, университетом Регенсбурга, Университетом Южной Калифорнии (USC) и Йельским университетом в США привело к изготовлению полевого транзистора, изготовленного из черного фосфора с примесью мышьяка. Новая разработанная технология позволяет синтезировать исследуемое соединение без высокого давления. Это дешевле и требует меньше энергии. Зазор между валентной зоной и зоной проводимости можно точно контролировать путем изменения концентрации мышьяка. С концентрацией мышьяка в 83 процента материал имеет крайне малую ширину запрещенной зоны, которая составляет всего 0,15 эВ. Это делает его потенциальным материалом для изготовления датчиков, которые могут обнаружить длинноволновую инфракрасную радиацию. Например, лазерные дальномеры работают в этом диапазоне длин волн. Другое возможное применение – это измерение частиц пыли и следов газов при экологическом мониторинге. Еще одним интересным моментом является анизотропия электронных и оптических характеристик новых двумерных полупроводников, т.е. материал проявляет различные характеристики вдоль х и у-осей. Для получения пленок, подобных графену, с поверхности материала снимают ультратонкие слои. Самые тонкие пленки, полученные к настоящему времени, имеют толщину всего два атомных слоя.

Исследователи IBM объявили о важном достижении в области разработки новейшей полупроводниковой продукции и представили первый тестовый чип, выполненный по 7-нанометровой технологии с функциональными транзисторами. Новый чип разработан IBM в сотрудничестве с GLOBAL FOUNDRIES, Samsung и ST Microelectronics на территории Центра исследования нанотехнологий Политехнического института при Университете штата Нью-Йорк. Технология позволит размещать на одном чипе размером с человеческий ноготь до 20 млрд транзисторов и использовать их во множестве разных устройств: от смартфонов до космических кораблей.

Для создания чипа по 7-нанометровой технологии с более высокими показателями производительности, низким энергопотреблением и улучшенным масштабированием исследователям IBM пришлось отказаться от традиционных методов производства полупроводниковой техники. Разработка наночипа потребовала использования ряда передовых инноваций, например, кремний-германиевых (SiGe) канальных транзисторов и многоуровневой экстремальной ультрафиолетовой (ЭУФ) литографии, которые были впервые применены исследовательским центром IBM Research совместно с партнерами.

Эксперты полупроводниковой промышленности считают создание и внедрение нового поколения чипов, выполненных по 7-нанометровой технологии, обязательным условием развития будущих систем облачных и когнитивных вычислений, обработки больших данных, мобильных решений и других передовых технологий. Новые наночипы стали результатом $3 млрд инвестиций, объявленных IBM в 2014 году, которые в течение пяти лет компания планирует вложить в научные исследования и разработку чипов. Данное открытие стало также возможным благодаря уникальному партнерству IBM и правительства штата Нью-Йорк, а также производственному альянсу, в который вошли IBM, GLOBAL FOUNDRIES, Samsung, ST Microelectronics и другие поставщики оборудования. Команда исследователей работала на территории Центра нанотехнологий Политехнического института при Университете штата Нью-Йорк в Олбани.

«Преимущества, которые можно получить при использовании 7-нм или более инновационных технологических процессов производства чипов для будущих моделей компьютеров и других электронных устройств, крайне важны для бизнеса и общества, – комментирует Арвид Кришна, старший вице-президент и руководитель IBM Research. – Именно поэтому компания IBM продолжает придерживаться принципа динамичных базовых исследований, что позволяет ей постоянно расширять границы возможного в сфере полупроводниковых технологий. Такое достижение стало возможным благодаря совместной работе с партнерами и десятилетиям исследований, которые стали эталоном для всей индустрии микроэлектроники. Это еще одно свидетельство лидерства компании IBM в этом секторе рынка».

Сегодня микропроцессоры, изготовленные по 22-нм и 14-нм технологии, используются в серверах, облачных ЦОДах и мобильных устройствах. Кроме того, постепенно осваивается и внедряется производство чипов по нормам 10-нм технопроцесса. IBM удалось достичь увеличения плотности размещения элементов по отношению к самому передовому сегодня 10-нм технологическому процессу почти на 50%. Такой результат получен за счет применения кремний-германиевых материалов для увеличения производительности транзисторов, а также за счет внедрения технологических новшеств для уменьшения шага между элементами до 30-нм и полной интеграции многоуровневой экстремальной ультрафиолетовой литографии. Эти достижения способны привести как минимум к 50% улучшению соотношения производительности к энергопотреблению в следующих поколениях систем, предназначенных для обработки больших данных, облачных и мобильных вычислений.

Знаковая величина в 7 нм продолжает традицию инноваций IBM в сфере чипов и полупроводников. Среди них – изобретение или первое применение динамической памяти DRAM с произвольным доступом, законов масштабирования Деннарда, фоторезистов с химическим усилением светочувствительности, соединительных медных проводов, технологии «кремний на изоляторе», технологии по увеличению проводимости электричества через транзистор (strained engineering), многоядерных микропроцессоров, иммерсионной литографии, высокопроизводительных кремний-германиевых чипов, диэлектриков затвора High-k, встроенной памяти DRAM, трехмерных интегральных схем и воздушной изоляции.

IBM и Политехнический институт при Университете штата Нью-Йорк ведут успешное сотрудничество в Центре исследования нанотехнологий в Олбани, в развитие которого были инвестированы миллиарды долларов. Одним из значимых результатов такого сотрудничества стал Центр полупроводниковых исследований и разработок – долгосрочная научно-исследовательская программа стоимостью $500 млн, в которой участвуют мировые лидеры по производству наноэлектроники. Основным направлением деятельности центра является исследование и разработка технологий компьютерных чипов будущего. Центр продолжает предоставлять студентам университета стипендии и гранты, чтобы подготовить следующее поколение ученых, исследователей и инженеров в сфере нанотехнологий.

Ученые Laser Physics Centre of Australian National University получили новые необычные материалы, индуцировав лазером микровзрывы в кремнии – материале, используемом для компьютерных чипов. Новая методика может привести к простому созданию сверхпроводников или высокоэффективных солнечных элементов и датчиков света. Под руководством профессоров L. Rapp и A.V. Rode, ученые создали две совершенно новые структуры кристаллов или фаз в кремнии и видели потенциальные признаки еще четырех.

Направив лазеры на кремний, находящийся под прозрачным слоем диоксида кремния, группа усовершенствовала способ точного взрыва крошечных полостей в твердом кремнии. Такой взрыв создает очень высокое давление вокруг себя, что приводит к образованию новых фаз, имеющих сложные структуры. Используя комбинацию электронных дифракционных картин и моделирования структуры, учёные обнаружили, что новые материалы имеют кристаллические структуры, которые повторяются каждые 12, 16 или 32 атома.

«Микровзрывы изменяют простоту кремния для гораздо более сложных структур, что открывает возможность для необычных и неожиданных свойств", – считают учёные. Эти сложные фазы часто нестабильны, но небольшой размер структур означает, что они очень быстро охлаждаются и затвердевают, прежде чем могут распасться. Новые кристаллические структуры просуществовали в лаборатории уже больше года.

Эти новые открытия не случайны, в их основе лежит глубокое понимание того, как лазеры взаимодействуют с материей. Обычные методы создания материалов с высоким давлением использовали крошечные алмазные наковальни для сжатия материалов. Но ультракороткий лазерный микровзрыв создает давление во много раз выше, чем алмаз. Метод позволяет создавать тысячи модифицированных зон микронного размера в нормальном кремнии в секунду. Новый метод обещает стать гораздо более дешевым и простым для массового производства таких необычных материалов.

Группа исследователей из США предложила новый способ определения степени вреда, наносимого организму человека углеродными наноматериалами. Разработанная техника позволяет определить, насколько те или иные наноструктуры влияют на различные типы клеток в легких у грызунов. Как считают сами ученые, в перспективе методика позволит создавать более безопасные углеродные наночастицы. Совместная группа исследователей из University of California и Northwestern University (США) в рамках своей последней работы предложила методику количественной оценки вреда, наносимого каждым из типов наноматериалов, а также разработала способы прогноза степени фиброза легких, которую заданная концентрация определенного наноматериала вызывает у грызунов, подвергшихся его воздействию.

В ходе экспериментов исследователи обнаружили, что каждый из наноматериалов может вызывать в той или иной степени несколько биохимических реакций в легких животных. Они производят интерлейкин 1b и трансформирующий фактор роста b1 в макрофагах и эпителиальных клетках, соответственно. Процесс в макрофагах происходит потому, что нанотрубки повреждают лизосомы в биологических клетках. При этом интерлейкин действует совместно с трансформирующим фактором роста, содействуя фиброзу легких. Эксперименты в пробирке показали, что степень очистки и подготовка специализированных углеродных материалов (независимо от того, как они были синтезированы) влияет на производство упомянутых веществ. При этом исследователи обнаружили, что одна из подготовленных ими вариаций оксида графена оказалась наиболее сильно способствующей фиброгенезу, в то время как покрытые PF108 однослойные углеродные нанотрубки и графен не вызывают фиброгенеза вообще.

Полученные таким образом данные показывают, что способ диспергирования наноматериалов в растворе и степень реактивности их поверхности играют ключевую роль в запуске фиброгенеза. Таким образом, результаты работы могут быть полезны для ранжирования опасности при работе с наноматериалами, а также выработки поэтапного подхода для тестирования различных углеродных материалов. В конечном счете, ученые планируют создать библиотеку специализированных углеродных материалов, имеющих определенные свойства (длина, пропорции, функциональность поверхности, поверхностные покрытия, дефекты, примеси, хиральность трубки, электронные свойства и т.п.). И проделанные исследования помогут им разработать более детальные количественные соотношения структуры и активности материалов. 


Возврат к списку публикаций


Ваше мнение о статье

Интернет-ресурсы

Популярные тэги ntsr.info

Нано в играх

Нанотехнологическое общество России

email: orgnanosociety@mail.ru