Нанотехнологии и полимеры

Регистрация | Забыли свой пароль?

Нанотехнологии сейчас у всех на слуху. Хотя мало кто понимает, что это такое. Информационное агентство «Новый Регион» провело опрос известных в России людей – политиков, писателей, журналистов, музыкантов – о том, что такое, по их мнению, нанотехнологии. Вот некоторые ответы.

Телеведущая Ксения Собчак: «Я не знаю, что это такое. Я впервые слышу это слово».
Певица Маша Малиновская: «Я не смогу вам объяснить, что это такое».
Коммунист Василий Шандыбин: «Чего вы от меня добиваетесь? Ну не знаю я, что это такое, уточните в другом месте».

Ну, девушкам то извинительно в наивном неведении относительно передовых технологий пребывать, а вот за Василия Ивановича стыдно. Не пристало видному представителю коммунистической партии в дремучести обретаться. Но это, так, небольшая демонстрация больших пробелов в части популяризации нанотехнологий в России. В общем и целом получается в соответствии с метким замечанием нашего бывшего премьер-министра Михаила Фрадкова, оброненным на одном из заседаний правительства: «Половина из присутствующих не знает, что такое нанотехнологии, но знает, что без этого жить нельзя». А у нас, раз нельзя, то, значит, надо. Надо нанотехнологии везде пробовать. В первую очередь в индустрии полимеров, которая задолго до появления самого термина «нанотехнологии» уже по сути таковой являлась.Что же мы имеем в нанотехнологиях с прицелом на полимеры?

Очевидно, что перспективы применения нанотехнологий в полимерной отрасли грандиозны, как всегда бывает на стыке нескольких направлений науки и производства.

Уже по самому своему определению (нанотехнологии – совокупность методов и приемов, применяемых при изучении, проектировании, производстве и использовании структур, устройств и систем, включающих целенаправленный контроль и модификацию формы, размера, интеграции и взаимодействия составляющих их наномасштабных элементов (1-100 нм) для получения объектов с новыми химическими, физическими, биологическими свойствами), нанотехнологии дают в руки полимерщикам новые методы и приемы производства полимерных материалов наряду с традиционными технологиями и открывают возможность реализовать давнишнюю мечту конструкторов – получить материалы с заранее заданными свойствами путем управляемого упорядочивания расположение молекул в полимерах. И ряд успешных шагов в этом направлении уже сделан.

«Исследователи из Массачусетского технологического института создали новый класс материалов – нанополимеры. В длину они достигают 50 тыс. частиц, при этом могут образовывать тонкие полимерные пленки площадью 1 кв. см и толщиной 60 мкм. Полимеры были созданы благодаря нарушению симметрии сферических наночастиц. Ученые присоединили два различных типа лигандов, молекул тиола, к полюсам сфер. Затем лиганды одной наносферы соединялись с лигандами другой частицы, образуя наномасштабный эквивалент полимера. Цепная реакция, которая занимает несколько часов, очень похожа на реакцию полимеризации нейлона. С помощью новой технологии можно создавать нанополимеры, обладающие определенными полезными свойствами. Например, она дает возможность контролировать пористость материала на наноуровне. Кроме того, новые полимеры могут использоваться для исследования фундаментальных свойств материалов».

«Ученые из университета штата Пенсильвания и университета Райса (США) сделали новый важный шаг в создании сверхпрочных полимеров. Новый материал является композиционным, в нем использованы обычный нейлон и углеродные нанотрубки.
Композит получают методом межфазной полимеризации, с помощью которого нанотрубки равномерно распределяются по длине макромолекулы. Кроме того, исследователи научились модифицировать свойства полимера путем введения алкильных сегментов, или углеродных спейсеров.
Спейсеры играют роль связующих сегментов, обеспечивающих ковалентную связь между нанотрубками и макромолекулами. Эта связь определяет прочностные и упругие свойства композиционного материала. Попытки создать композицию нейлона с нанотрубками без спейсеров были неудачными – материалы оказались слишком хрупкими.
Важным результатом исследования является возможность получать материалы с заданными свойствами – регулировать можно не только механические, но и электрические, и термические свойства».

«Ученые из National Institute of Standards and Technology (NIST) создали совершенно необычный полимер из нанотрубок длинной до 1 см. Трубки позволяют материалу быть не только чрезвычайно прочным, но и неограниченное время поддерживать форму. Кроме материала для чего-либо, данный полимер может применяться как средство передачи малых объемов химикатов (через трубки), т.е. работать как микроскопические шприцы, вводящие молекулы в зону химической реакции по 1 шт.
До этого времени самыми «удачными» свойствами обладали нанотрубки из углерода. Стабильные и не хрупкие трубки из другого материала были получены впервые».

«Ученые из Боннского и Левенского университетов обнаружили, что могут влиять на газо- и водопроницаемость пластмасс, добавляя в них наноразмерные пластинки. Если такие пластики использовать для пищевой упаковки, то они могли бы помочь в сохранении фруктов, овощей и других скоропортящихся продуктов, увеличивая допустимое время нахождения на прилавке и снижая стоимость перевозки, включая доставку от производителя до хранилища».

«Упаковка из нанополимера, содержащего частицы оксида цинка, не восприимчива к УФ-излучению и продлевает срок хранения пищевых продуктов. Разработка представлена компанией Micronisers. Специальный материал с оксидом цинка Nanocryl обеспечивает наилучшую и наиболее длительную защиту от воздействия солнечного света и высоких температур. Компания также заверяет, что новый ПЭНД пленки на основе нового полимера не так быстро разлагаются в почве как традиционные пластиковые материалы, и может успешно применяться в сельском хозяйстве – как укрывная пленка для растений».

«Освоена методика организации протяженных структур из нанотрубок и наностержней на разнообразных поверхностях со строго определенной, контролируемой и стабильно выдерживаемой по поверхности плотностью с использованием полимерных пузырей.
Ученым из Гарвардского и Гавайского университетов удалось продемонстрировать возможность использования метода экструзии посредством надувания пузырей для создания протяженных слоев из ориентированных в пространстве заданным образом нанотрубок. Аналогичные технологии были известны и использовались в промышленности и раньше, например, при производстве пластиковых пленок, однако для организации массивов из нанотрубок технология «мыльных пузырей» была применена впервые.
В ходе проведенных экспериментов наноструктуры растворялись в жидкости на основе полимера, из которой выдувался пузырь. Малая толщина стенок пузыря (несколько сот нанометров) способствовала равномерному и упорядоченному расположению нанотрубок в стенках пузыря.
По мере контролируемого роста пузырь соприкасался с экспериментальной подложкой - например, кремниевой пластиной. При этом стенка пузыря с содержащимися в ней наноструктурами «прилипала» к пластине, образуя сверхтонкую пленку со строго определенной и контролируемой удельной плотностью наноструктур.
Предполагается, что новая технология позволит удешевить, в частности, массивы биологических сенсоров и экраны на основе наноструктур».

«Полимерная резиновая смесь молекулярного уровня, рожденная нанотехнологиями, обеспечивает взаимодействие шины даже с самыми мельчайшими выступами дорожной поверхности, идущее на молекулярном уровне. Можно сказать, новая шина прямо-таки берет дорогу в свои объятия. Новая резиновая смесь также отличается выдающимися параметрами износостойкости. Объединение этих противоречивых параметров – отличное сцепление и низкий износ – относится к заслугам разработчиков шин. И все это за счет нанотехнологий.»

Помимо создания материалов с улучшенными характеристиками, симбиоз нанотехнологий и полимеров позволяет получать полезные эффекты, ранее не виданные.

«Созданная американскими исследователям химического факультета Калифорнийского университета в Риверсайде жидкость, изменяющая свой цвет под воздействием магнитного поля, содержит крошечные частицы оксида железа диаметром примерно 100 нанометров с нанесенным на них полимерным покрытием. Пластик несет на себе электрический заряд, а оксид железа подвержен действию магнитных полей. В результате манипуляций этими двумя противостоящими силами из частиц можно создавать упорядоченные структуры, носящие наименование коллоидных «фотонных кристаллов». Аккуратно выстроенная решетка обладает способностью не пропускать свет с длиной волны, сравнимой с периодом структуры фотонного кристалла – таким образом можно менять цвет изображения на «жидких экранах».
Подобная взвесь частиц чрезвычайно дешева и проста в изготовлении и помимо гигантских мониторов, не «слепнущих» под прямыми лучами солнца, с успехом может быть использована при создании гибкой перезаписываемой «электронной бумаги».

«Учеными создан первый в мире нейроинтерфейс, связывающий нейроны с пленками, содержащими фотоэлементы. Как считают исследователи, это открытие позволит в будущем сконструировать искусственную сетчатку глаза.
Профессору Николасу Котову из медицинского отделения Техасского университета и его коллегам из университета Мичигана удалось связать нервные клетки с воздействием фотонов на специальную фотосенсорную пленку, связанную с клетками.
Это открытие не обошлось без использования нанотехнологий. Наночастицы, использованные в составе световоспринимающей пленки, помогли создать современный прототип будущей искусственной сетчатки.
Основа искусственной сетчатки – тонкая пленка, созданная послойно. Она представляет собой «бутерброд» из двух слоев: слоя наночастиц теллурида ртути и положительно заряженного слоя полимера PDDA. Оба слоя ученые соединили с помощью специального клея и нанесли на поверхность «бутерброда» биосовместимое аминокислотное покрытие, чтобы нервные клетки могли без проблем взаимодействовать с пленкой.
На пленке ученые разместили культуру нейронов. Как только фотоны начали попадать на ее поверхность, в пленке наночастицы абсорбировали фотоны, производя при этом электроны, проходящие через слой полимера PDDA, вырабатывающего слабый электрический ток. Когда ток доходил до клеточной мембраны нейронов, происходил процесс ее деполяризации, и начиналось распространение нервного сигнала, свидетельствующее о наличие в этой области пленки света.
Искусственная сетчатка, созданная на базе открытия ученых, сможет даже воспроизводить цветовую насыщенность объектов, не говоря уже о высоком разрешении.
Также сетчатка биологически совместима с тканями человека, благодаря использованию полимеров».

«Препарат «тромбовазим», предотвращающий инфаркт и инсульт, разработан учеными из Института цитологии и генетики, Института ядерной физики и Сибирского центра фармакологии и биотехнологии. Препарат не повреждает здоровые ткани организма, не токсичен и не вызывает осложнений, как некоторые его аналоги. Он был создан с использованием электронно-лучевой технологии, нанотехнологии и биополимерной технологии и представляет собой биополимер, соединенный с помощью электронного пучка с лекарственным средством. Препарат является первым в мире пероральным тромболитиком, который всасывается желудочно-кишечным трактом, не теряя своих лечебных качеств».

«Реактивные двигатели, рабочим телом которых являются полимерные материалы, образующиеся в ходе быстрой полимеризации, могут стать эффективным средством передвижения нанороботов. По крайней мере, в природе такой принцип движения успешно используется некоторыми видами бактерий. К примеру, мощные выбросы через специальные сопла в мембране струй слизи, ключевой компонент которой – полисахариды, формирующиеся путем реакции полимеризации олигосахаридов, позволяют передвигаться миксобактериям. Если полимерная цепь образуется медленно, она так же медленно выделяется из сопла, и движения не возникает. А вот при более быстром образовании полисахарида, превышающем по скорости отток слизи, происходит сжатие этого рабочего тела, и слизь выстреливается из клетки, благодаря чему миксобактерии могут передвигаться со скоростью до 10 мкм/с. Этот принцип передвижения можно использовать для управляемого перемещения нанороботов».

«Исследователи из технологического института Нью-Джерси (NJIT) разработали новый тип солнечных батарей, отличающийся невысокой стоимостью и возможностью производить их путем печати на гибкой пластиковой подложке.
По мнению ведущего разработчика и автора идеи Сомната Митра, профессора и руководителя кафедры химии и окружающей среды NJIT, домовладельцы смогут даже печатать ячейки этих солнечных батарей на недорогих домашних струйных принтерах. Затем они смогут прикрепить полученный продукт на стену, крышу или забор, чтобы создать собственную электростанцию.
Суть технологии заключается в том, что углеродные нанотрубки комбинируются с фуллеренами и формируют таким образом структуры наподобие «змеевиков». Солнечный свет, падая на полимерную основу, возбуждает в полимере ток, и фуллерены захватывают электроны. Однако фуллерены не обладают электропроводностью, и здесь свою роль играют нанотрубки, проводящие ток аналогично медным проводникам. Захваченные электроны, двигаясь по нанотрубкам, создают в них ток.
«Использование этой уникальной комбинации в солнечных батареях на органической основе приведет к увеличению эффективности будущих печатных солнечных батарей, – считает Митра. – Эта технология позволит обеспечить домовладельцев недорогим альтернативным источником энергии».

«В Дубне учеными Научного центра прикладных исследований (НЦеПИ) ОИЯИ на основе нового вещества – гетероэлектрика (гетероэлектрик – гетерогенная субстанция, состоящая из носителя и активного начала – наночастиц вещества, отличного от вещества носителя, при этом размеры наночастиц и расстояние между ними меньше длины волны воздействующего электромагнитного поля, что позволяет осуществлять управление магнитным полем и его преобразование с целью создания приборов и устройств с прогнозируемыми оптическими, электрическими и магнитными свойствами) создана «звездная батарея». «Звездная батарея» состоит из гетероэлектрического фотоэлемента с высокой эффективностью работы в видимом и инфракрасном спектре и гетероэлектрического конденсатора огромной емкости в малом объеме.
На способы и устройства с использованием гетероэлектрика специалистами НЦеПИ получены патенты, не имеющие аналогов в мире: наноусилитель электрического излучения, электрический конденсатор и ненавесные элементы интегральных схем, зеркало, способ генерации когерентного электромагнитного излучения и дипольный нанолазер на его основе, оптическое стекло, фотокатод, гетерогенный фотоэлемент, фотоэлемент.
Специалистами НЦеПИ подана также заявка на оптическое стекло из гетероэлектрика с рекордным показателем преломления света, превышающим современные показатели в десятки раз.
В настоящее время слабое применение солнечной энергетики обусловлено следующими ее недостатками:
низкая эффективность преобразования света в электрический ток (не более 20%);
отсутствие возможности получения электроэнергии ночью, при облачности и с малым количеством солнечных дней в году;
отсутствие высокоэффективных и экологически безопасных источников накопления энергии (в настоящее время используются аккумуляторы).
У демонстрируемого учеными НЦеПИ образца гетероэлектрического фотоэлемента, являющегося основным компонентом «Звездной батареи», эти недостатки отсутствуют. Зато имеются явные преимущества: эффективность преобразования видимого спектра cоставляет -54%, что значительно превышает существующие мировые показатели, а эффективность преобразования инфракрасного спектра – 31% , что даже выше, чем у современных солнечных батарей. Фототок гетероэлектрического фотоэлемента (ГЭФ) в 4 раза выше, чем у современных солнечных батарей.
При этом ГЭФ имеет массу полупроводникового вещества на ватт энергии в 1000 раз меньше, чем у фотоэлементов современных солнечных батарей. Полученные расчеты указывают на то, что себестоимость гетероэлектрического фотоэлемента звездной батареи будет ниже себестоимости фотоэлемента современной солнечной батареи.
Для справки.
Новое вещество, открытое и запатентованное под названием гетероэлектрик, обладает интересным свойством: если в какой-либо материал (носитель) ввести наночастицы определенного ряда других материалов (затравку), то воздействие электромагнитного поля вызывает явление суперкогерентности – интенсивные согласованные по времени колебания электронов «затравки», приводящие к интенсивному взаимодействию всего образца (гетероэлектрика) с электромагнитным полем, что уникальным образом меняют свойства этого материала.
В переводе на простонародный: формирование структуры материала посредством введения в него наночастиц другого материала под действием электромагнитного поля позволяет существенным образом изменять свойства исходного материала и управлять этими свойствами, изменяя параметры электромагнитного излучения».

Примеров можно было бы привести много больше. Только по первобытной привычке человека первым делом приспосабливать все новое для проламывания черепа ближнего своего, многие разработки в области совместного использования нанотехнологий и полимерных технологий засекречены, потому как ведутся на деньги военных ведомств и корпораций. Если на них хотя бы краешком глаза взглянуть, то сначала дух захватит (сколько же человек может всего понапридумывать), потом волосы дыбом встанут (сколько же человек может всего понапридумывать для того, чтобы уничтожить себе подобного), затем сожаление придет (сколько же человек может всего понапридумывать для того, чтобы уничтожить себе подобного, а если б все это, да в мирных целях).

А ведь сфера мирного применения нанотехнологий в полимерной отрасли, намного многограннее и перспективнее, нежели в оборонке.

Вот, положим, ученые из екатеринбургского Финансово-промышленного венчурного фонда ВПК, разработали жидкую броню на основе жидкого полимера, наполненного наночастицами. Сам состав «наноброни», как и имена разработчиков, не разглашается, поскольку все детали научного проекта спрятаны под грифом «секретно», но принцип ее действия широко известен: при резком механическом воздействии (например, ударе пули) наночастицы в жидком полимере практически мгновенно сближаются и за счет сил межмолекулярного взаимодействия слипаются в кластеры. Жидкая броня превращается в прочный твердый композит.

Работали екатеринбуржцы над бронежилетами. Получилось. Но дальше предложения использовать технологию для производства танковой и вертолетной брони фантазии у ученых в погонах не хватает.

А эту технологию черти где применить можно. И тогда она станет успешным коммерческим проектом, а не превратится в очередной секрет для отечественной промышленности, который, в конце концов, будет выдан иностранной разведке и озолотит тамошних бизнесменов.

В частности, элементы технологии «жидкой брони» можно с успехом применить в строительстве сейсмоустойчивых сооружений, которые при подземных толчках превращались бы в прочные бастионы, а не рассыпались, как карточные домики. Ведь есть же примеры слияния нанотехнологий и полимеров при строительстве сейсмоустойчивых зданий. Но пока что не у нас.

«Первый коттедж, который сможет противостоять разрушению от землетрясения умеренной силы за счёт достижений нанотехнологий, будет построен в Греции в 2010 году. Необычный проект разрабатывает Институт нанотехнологического производства университета Лидса, а также ряд других научных учреждений и компаний Европы.
Учёные намерены ввести в состав бетона мириады полимерных наночастиц, разработанных таким образом, что под давлением они превращаются в жидкость, способную проникать в трещины, а затем – укрепляться, словно клей или бетон.
По замыслу учёных, наночастицы должны стабилизировать несущую структуру дома после повреждений, полученных при землетрясении, тем самым повысив его сейсмостойкость и снизив риск серьёзных разрушений.
Один из лидеров проекта, профессор Терри Уилкинс из института нанотехнологического производства, поясняет, что здесь учёные едва ли не впервые пробуют найти работу нанополимерам в изделиях столь большого масштаба.
Уилкинс говорит: «Как только у нас появится оптимальный проект, мы могли бы быстро начать производство тысяч литров жидкости с наночастицами, добавляя её небольшой процент к гипсовой смеси».

Что касается перспектив нанотехнологий в индустрии полимеров, то согласно прогнозам американской компании ВСС, основанным на исследовании рынка наноматериалов, несмотря на то, что в настоящее время наибольшую долю по уровню потребления составляют неполимерные наноматериалы, в ближайшем будущем они уступят свое место нанополимерам, которые уже сегодня уверенно составляют более четверти всего рыночного сегмента. Именно нанополимеры станут, по прогнозу ВСС, наиболее востребованными наноматериалами в мире.

Впрочем, и без глубокомысленных и дорогостоящих прогнозов экспертов ВСС ясно, что нанополимеры ждет блестящее будущее, и они станут наиболее востребованными наноматериалами в мире. Причем обыденными, а не какими-то чудодейственными. Из которых штаны будут шить. Но начнется победное шествие нанополимеров по ушам обывателей с чего-нибудь необычного, будоражащего воображение. Например, с появлением в продаже костюма «человека-паука».

Ряд исследователей предполагает использовать углеродные нанотрубки, являющиеся на сегодняшний день наиболее известными наноструктурами, для формирования миниатюрных волосков при создании костюма «человека-паука». Принцип его действия подобен ухищрениям ящериц и пауков: у обоих этих видов животных на лапках есть крошечные волоски, которые позволяют им держаться на вертикальной поверхности, как бы «приклеиваться» к ней, благодаря силам межмолекулярного притяжения (силам Ван-дер-Ваальса). Вот некоторые ученые и работают над технологией создания материала, покрытого множеством тончайших прочных волосков, свободные электроны с поверхности которых вступают во взаимодействие со свободными электронами гладкой на первый взгляд вертикальной поверхности, позволяя легко перемещаться по ней. Одними из самых перспективных материалов для костюма «человека-паука» являются нанополимеры.

Идеал недостижим, но к нему стремится надо. Игра на межмолекулярных взаимодействиях, затеянная нанотехнологами, на практике может довести свойства полимерных материалов до теоретических пределов, до которых им еще очень далеко, в отличие от традиционных материалов: металлов и древесины. Так что раскладка применений нанотехнологий будет смещаться в сторону полимеров.

При разумном и вдумчивом подходе к нанотехнологиям в приложении к полимерам будут получены, и дешевые, и прочные, и всяки разны нанополимеры. Только творчески к процессу работы с информацией о новых достижениях нашим бизнесменам подходить надо. Информация становится руководством к действию лишь в опытных руках с умными головами и при хороших деньгах. Опытные руки – тело бизнеса, умные головы – его мозг, деньги – оживляющее все кровь. Ну и душу еще, конечно, в дело вложить надо. Руководителя. Тогда работа пойдет, а информация небесполезной окажется. Когда наши бизнесмены эту азбучную истину осознают, тогда и крепкий бизнес на нанополимерах получится. С русским, а не китайским акцентом.

А то, что информационные сообщения об успехах в области нанотехнологий пестрят названиями не наших институтов и лабораторий… Обидно, конечно, за державу. Но в тех сообщениях во многом отголоски и наших достижений уловить можно. Причем вчерашних. О сегодняшних наших достижениях в области нанотехнологий их СМИ затрубят завтра, когда к ним уйдут наши специалисты, этих достижений у нас добившиеся. А потому вдвойне обидно. Мы традиционно сильны в генерации научных идей и получении начальных результатов. Только видим мы наши достижения в чужом обличье. И деньги за товар на основе наших достижений отдаем чужим бизнесменам. Хотя, где наше, где чужое, уже и не отличишь в этом мире. Наши бизнесмены идут на западные и восточные рынки, иностранные корпорации вкладываются в развитие производства у нас. Так что, покупая какой-то товар, не знаешь, к кому, в конце концов, попадут деньги. Чью экономику они запитают. Деньги идут к тем, кто их не жалеет на выведение научных разработок на уровень промышленных технологий и на пиар товаров, по этим технологиям производимым. И нанотехнологии с уклоном в сторону полимеров исключением не являются. Но… деньги идут к тем, кто их не жалеет на выведение научных разработок на уровень промышленных технологий и на пиар товаров, по этим технологиям производимым. А у нас с этим делом проблемы. В основном – в головах, и немного – в инфраструктуре экономики.


Возврат к списку публикаций


Ваше мнение о статье

Интернет-ресурсы

Популярные тэги ntsr.info

Нано в играх

Нанотехнологическое общество России

email: orgnanosociety@mail.ru